
A General Purpose Local Search Algorithm for Binary
Optimization

Dimitris Bertsimas, Dan Iancu, Dmitriy Katz
Operations Research Center, Massachusetts Institute of Technology, E40-147, Cambridge, MA 02139, USA

{dbertsim@mit.edu, daniancu@mit.edu, dimdim@mit.edu}

We develop a general purpose local search algorithm for binary optimization problems, whose

complexity and performance are explicitly controlled by a parameter Q, measuring the depth

of the local search neighborhood. We show that the algorithm is pseudo-polynomial for

general cost vector c, and achieves a w2

2w−1
approximation guarantee for set packing problems

with exactly w ones in each column of the constraint matrix A, when using Q = w2. Most

importantly, we find that the method has practical promise, as it delivers performance that

is either comparable to or strictly better than leading optimization software (CPLEX 9.1)

on large, randomly generated instances of both set covering and set packing problems.

Key words: Programming, Integer, Algorithms, Heuristic

1. Introduction

In the last fifty years there has been considerable progress in our ability to solve large scale

binary optimization problems:

max c′x

s.t. Ax ≤ b

x ∈ {0, 1}n

A ∈ Zm·n, b ∈ Zm, c ∈ Zn.

(1)

A testimony of this progress is the fact that major codes (like CPLEX and EXPRESS)

are now capable of solving such problems that a decade ago were out of reach. In addition

to very significant speedups in computing power, the two major ingredients that led to

progress on the algorithmic side were: a) the introduction of new cutting plane methods,

using a plethora of valid inequalities that improve the bounds on the solution and the ability

to prove optimality, and b) the use of heuristic algorithms. While it is difficult to make an

exact assessment of the merits of each algorithmic development, we believe that new cutting

plane methods had a more significant impact than the use of heuristic methods.

1

Despite the major progress of the field, we still cannot solve especially dense binary

problems. In real-world applications, there is stringent desire to find feasible solutions that

improve current practice, without necessarily having a proof of their optimality. Thus,

there is a definite need to develop general purpose methods producing high quality feasible

solutions. There are relatively few methods for general binary integer programming problems

(see Aarts and Lenstra (1997) for a review), including the lift-and-project methods (Balas

et al., 1993), the pivot-and-complement heuristic (Balas and Martin, 1980), the “feasibility

pump” (Fischetti et al., 2005), and the “pivot, cut and dive” heuristic (Eckstein and Nediak,

2007).

In this paper, we develop a new algorithm for general binary optimization problems, and

provide both theoretical and empirical evidence for its strength. Specifically, our contribu-

tions are as follows:

1. The algorithm is genuinely general purpose, in that it does not utilize any special

combinatorial structure in Problem (1).

2. The tradeoff between complexity and performance of the algorithm is explicitly con-

trolled by a parameter Q, which intuitively measures the depth of the neighborhood

in the local search. More precisely, with increasing Q, the algorithm can deliver higher

quality solutions, at the expense of higher running time.

3. We show that the running time is bounded by O
(
‖c‖21 · n ·

(
2m
Q

)
·max(m, n)

)
, i.e., for

a fixed Q, the algorithm is pseudo-polynomial for general c and strongly polynomial

when c = e, a vector of ones.

4. For the unweighted maximum w-set packing problem (A ∈ {0, 1}m·n, with w ones on

each column, and b = c = e), we show that our algorithm achieves a w2

2w−1
approx-

imation guarantee, contrasted with the slightly stronger bound of w
2

due to Hurkens

and Schrijver (1989). Note that the latter heuristic is not general-purpose, but rather

a specific result of a theorem pertaining to set packing problems.

5. Most importantly, we compare the algorithm’s performance with CPLEX 9.1 on ran-

domly generated instances for both set covering and set packing, with very encouraging

results. Specifically, the proposed algorithm outperforms CPLEX after approximately

20 hours (when both methods are run with the same memory, 6GB), and sometimes

even earlier.

2

The structure of rest of the paper is as follows. In Section 2, we present the algorithm,

and give an example (which is further expanded in the Appendix). In Section 3, we analyze

its running time, while in Section 4 we provide the theoretical guarantee for a class of set

packing problems. In Section 5, we discuss implementation details, and in Section 6, we

provide empirical evidence of the algorithm’s strength by comparing its performance with

CPLEX, for several classes of set covering and packing problems.

2. Algorithm

Our algorithm takes as inputs the matrix A, the vectors b and c, a parameter Q and an initial

feasible solution z0, and constructs a sequence of feasible solutions z with monotonically

increasing objective function values. The parameter Q controls the tradeoff between the

quality of the final output solution and the computational complexity of the algorithm.

2.1. Notation

For any vector x ∈ {0, 1}n, we define the following:

• xv = max(Ax− b,0) ∈ Zm
+ : the amount of constraint violation produced by x.

• xu = max(b−Ax,0) ∈ Zm
+ : the amount of constraint “looseness” created by x.

• xw = min(xu, e) ∈ {0, 1}m.

• trace(x) = [xv; xw] ∈ Zm
+ × {0, 1}m.

Furthermore, we introduce the following concepts:

• Two solutions x and y are said to be adjacent if e′|x − y| = 1.

• A feasible solution z1 is said to be better than another feasible solution z2 if c′z1 > c′z2.

• Let z be the best feasible solution available to the algorithm at a particular iteration.

A solution y is called interesting if the following three properties hold:

(A1) ‖yv‖∞ ≤ 1 : no constraint is violated by more than one unit.

(A2) ‖trace(y)− trace(z)‖1 ≤ Q : the total amount of violation in y plus the number

of different loose constraints (as compared to z) is at most Q.

3

(A3) c′y > c′x ,∀x already examined by the algorithm, satisfying h (trace(x)) =

h (trace(y)).

Here, h : {0, 1}2m → N is a function mapping traces of interesting solutions1 into

integers. The only restriction we impose on h(·) is that evaluating it should be linear

in the size of the input: O(m). Apart from that, it can be injective, in which case

only solutions with identical traces will be compared, or it can be a hash function

(for an introduction to hash functions, see Cormen et al. (2001)). The reason for

introducing such a hash function is to accelerate the algorithm, at the potential expense

of worsening the performance. We will elaborate more on this tradeoff in Section 5,

which is dedicated to implementation details.

Note that due to Condition (A3), for every value i in the range of h, the algorithm

needs to store the highest objective function value of an interesting solution x satisfying

h(trace(x)) = i. We will refer to the location where this value is stored as the trace

box (T B) corresponding to x or to trace(x), and will denote it by T B[i].

• The set of interesting solutions is also referred to as the solution list (SL).

2.2. Algorithm Outline

With these definitions, we now give a brief outline of the algorithm, which will also give

some insight into the types of data structures that are needed. The key ingredient in the

heuristic are interesting solutions. In a typical iteration, the algorithm will pick a candidate

x from the list of interesting solutions (SL), and examine all solutions y adjacent to it. If

these solutions turn out to be interesting themselves, they are stored in the list, and the

appropriate trace boxes are changed.

By following this method, occasionally we come across solutions y which are feasible. If

they are also better than the best current feasible solution z, then z is replaced, the list and

the trace boxes are cleared, and the procedure resumes by examining solutions adjacent to

z. A formal statement follows.

To understand the steps in the algorithm, let us consider the following example of a set

1Since h(·) is only applied to interesting solutions y, which, by condition (A1), must satisfy yv ∈ {0, 1}m,
we can take h : {0, 1}2m, instead of h : Zm

+ × {0, 1}m.

4

Algorithm 1: Local search heuristic
Input: matrix A; vectors b, c; feasible solution z0; scalar parameter Q > 0
Output: Feasible solution z such that c′z ≥ c′z0

optimizeIP(A, b, c, z0, Q)
(1) z := z0; SL := {z}
(2) while (SL 6= ∅)
(3) get a new solution x from SL
(4) foreach (y adjacent to x)
(5) if (y is feasible) and (c′y > c′z)
(6) z ← y
(7) SL ← ∅; T B[i]← −∞, ∀i
(8) SL ← SL ∪ {y}
(9) goto Step 3
(10) else if (y is interesting)
(11) T B [h(trace(y))]← c′y
(12) SL ← SL ∪ {y}
(13) return z

packing problem:
max x1 + x2 + x3

s.t. x1 + x3 ≤ 1
x2 + x3 ≤ 1

x1, x2, x3 ∈ {0, 1}.

(2)

It is easy to see, by inspection, that the optimal solution is xopt
def
= [x1, x2, x3] = [1, 1, 0].

In order to illustrate the steps that Algorithm 1 would take in finding this solution, we will

make the following choice concerning the parameters and implementation:

• We will make the simplest possible run, with a parameter Q = 1.

• We will start the algorithm with the initial solution z0 = [0, 0, 0].

• Since every trace of an interesting solution x is a binary vector, trace(x) ≡ [t2m−1, t2m−2, . . . ,

t1, t0] ∈ {0, 1}2m, we will take the mapping h(·) to be the decimal representation:

h : {0, 1}2m → R, h ([t2m−1, . . . , t1, t0]) =
2m−1∑
i=0

ti · 2i

• We will assume that the solution list SL is implemented as a First-In, First-Out (FIFO)

list, so that solutions are extracted in the same order in which they are inserted.

With these remarks, we now proceed to list the first few steps in the algorithm:

• (Step 1) z := [0, 0, 0]; SL := { [0, 0, 0] }.

5

• (Step 2) SL := { [0, 0, 0] } 6= ∅.

• (Step 3) x← [0, 0, 0]. Adjacent solutions are [1, 0, 0], [0, 1, 0], [0, 0, 1].

– (Step 4) y = [1, 0, 0], trace(y) = [0, 0 ; 0, 1].

∗ (Step 5) y feasible, e′y = 1 > e′z.

∗ (Steps 6 - 8) z ← [1, 0, 0]; SL ← { [1, 0, 0] } ; T B[i]← −∞, ∀i.

• (Step 3) x← [1, 0, 0]. Adjacent solutions are [0, 0, 0], [1, 1, 0], [1, 0, 1].

– (Step 4) y = [0, 0, 0], trace(y)
def
= [yv ; yw] = [0, 0; 1, 1].

∗ (Step 5) y feasible, but e′y = 1 = e′z.

∗ (Step 10) y is found to be interesting, since:

(A1) true: ‖yv‖∞ = ‖[0, 0]‖∞ ≤ 1.

(A2) true: ‖trace(y)− trace(z)‖1 ≤ Q.

(A3) true: e′y = 1 > T B [h(trace(y))] = T B[3] = −∞.

∗ (Steps 11 - 12) T B[3]← 1; SL ← { [0, 0, 0] }.

– (Step 4) y = [1, 1, 0], trace(y) = [0, 0; 0, 0].

∗ (Step 5) y feasible, e′y = 2 > e′z (= 1).

∗ (Steps 6 - 8) z ← [1, 1, 0]; SL ← { [1, 1, 0] } ; T B[i]← −∞, ∀i.

We note that, although the algorithm has found the optimal solution z = xopt = [1, 1, 0],

quite a few steps remain, which we have listed, for completeness, in the Appendix. Moreover,

the particular choices of implementation in the above example have been made in order to

facilitate exposition, and are by no means efficient. In Section 5, we include a detailed

discussion of the data structures and hash functions used in our implementation.

3. Running Time

In this section, we bound the running time of the algorithm as follows:

Theorem 1. For fixed Q and injective h(·), the running time of Algorithm 1 is bounded

above by:

O

(
‖c‖21 · n ·

(
2m

Q

)
·max(m,n)

)
. (3)

6

We postpone the proof of Theorem 1 until the end of this section, and first introduce the

following lemma:

Lemma 1. The total number of solutions x that can be examined between two successive

updates of the current feasible solution z is O
((

2m
Q

)
· ‖c‖1

)
.

Proof. First note that whenever the current feasible solution z is updated, the solution list

SL is emptied, the trace boxes are cleared, and only z is inserted in SL. Hence for any

solution x 6= z to be examined, it must first be inserted into SL.

By Condition (A3) in the definition of interesting solutions, an interesting x inserted

into SL must satisfy c′x > T B [i], where i = h (trace(x)). Since x ∈ {0, 1}n, c′x ∈{∑
ci<0 ci, . . . ,

∑
ci>0 ci

}
. Hence the number of updates for any trace box i is at most ‖c‖1+1,

which implies that at most ‖c‖1 + 1 different solutions x mapping to i can be inserted into

SL.

The number of trace boxes i is upper-bounded by the number of distinct traces of inter-

esting solutions. If x is an interesting solution, then:

• Condition (A1) ⇒ ‖xv‖∞ ≤ 1⇒ xv ∈ {0, 1}m ⇒ trace(x) ∈ {0, 1}2m

• Condition (A2) ⇒ ‖trace(x)− trace(z)‖1 = ‖xv − 0‖1 + ‖xw − zw‖1 ≤ Q.

The number of binary vectors of length 2m satisfying this property is upper bounded by:(
2m

Q

)
+

(
2m

Q− 1

)
+ · · ·+

(
2m

1

)
+ 1. (4)

Thus, there are O
((

2m
Q

))
trace boxes to keep track of. Since for each trace box at most

‖c‖1 + 1 solutions can be inserted in SL, we conclude that the number of solutions which

can be examined, which is always less than the number of solutions inserted in the list, is

O
((

2m
Q

)
· ‖c‖1

)
.

The following lemma deals with the amount of computation performed when examining

an interesting solution x.

Lemma 2. The number of operations performed for any interesting solution x that is exam-

ined between two consecutive updates of the current feasible solution z is O (n ·max(m, n)).

Proof. Without going into the details of the implementation, let us consider what operations

are performed when examining an interesting solution x.

7

(B1) trace(x) is calculated. This implies the following:

• Computing Ax− b, which requires O(m · n) operations for a dense matrix A.

• Comparing Ax − b with 0, to check for violated or loose constraints, requiring

O(m) computations.

(B2) Computing the objective function for x, requiring O(n) operations.

(B3) Examining all the solutions y adjacent to x. One such examination entails:

• Computing trace(y) from trace(x). Since y = x± ei ⇒ Ay − b = Ax− b±Ai.

Because Ax − b is already available, computing trace(y) only requires O(m)

operations.

• Computing the trace box for y, T B[h(trace(y))]. As mentioned earlier, we are

requiring that an evaluation of the function h(·) should use O(m) operations, i.e.,

linear in the size of the argument. Thus T B[h(trace(y))] can be computed with

O(m) operations.

• Computing the objective function value for y. This is O(1), since c′y = c′x± ci.

• Comparing c′y with T B[h(trace(y))]. Since the theorem assumes that the cur-

rent feasible solution z is not updated, the results of the examination could be

that (i) y is ignored or (ii) T B[h(trace(y))] is replaced and y is added to SL.

Overall complexity is at most O(n).

Since the number of solutions y adjacent to a given x is n, the overall complexity of step

(B3) above is O (n ·max(m, n)), and dominates steps (B1) and (B2). We conclude that the

overall complexity associated with examining any interesting solution x is O (n ·max(m, n)).

With the help of the preceding lemmas, we can now prove Theorem 1.

Proof. From Lemma 1, the number of solutions that have to be examined between two

successive updates of z is O
((

2m
Q

)
· ‖c‖1

)
. From Lemma 2, each such examination entails

O (n ·max(m,n)) operations. Hence the amount of operations that are performed while

examining interesting solutions between updates of z is O
((

2m
Q

)
· ‖c‖1 · n ·max(m, n)

)
.

Each update of the current feasible solution z involves copying the new solution (O(n)),

emptying the solution list and clearing the trace boxes. The latter operations are linear in

8

the total number of trace boxes, which, from a result in Lemma 1, is O
((

2m
Q

))
. Therefore

updating z entails O
(
max

{
n,
(
2m
Q

)})
operations.

Since z ∈ {0, 1}n ⇒ c′z ∈
{∑

ci<0 ci, . . . ,
∑

ci>0 ci

}
. Hence, there can be at most ‖c‖1+1

updates of z. Therefore, the total running time of the algorithm is:

O

(
‖c‖1

[(
2m

Q

)
· ‖c‖1 · n ·max(m, n) + max

{
n,

(
m

Q

)}])
=

= O

(
‖c‖1

2 · n ·
(

2m

Q

)
·max(m,n)

)
We make the observation that when c = e, the above result becomes O

(
n3 ·

(
2m
Q

)
·max(m, n)

)
,

proving that Algorithm 1 is strongly polynomial for a fixed Q.

4. Performance Guarantee for Set Packing Problems

So far, we have put no restrictions on the particular data-structures that are used. While

this level of generality was appropriate for the algorithm description, in order to prove a

meaningful result about the performance, we have to be more specific about the details.

As such, for the remaining part of this section, we consider a solution list SL implemented

as a First In First Out (FIFO) list, and we consider the ideal case of an injective h(·), namely

when each trace box corresponds to a unique trace of an interesting solution, and, implicitly,

only solutions having exactly the same trace are compared.

We focus on the following binary optimization problem, which is an integer programming

formulation for the well known unweighted w-set packing problem:

max e′x

s.t. Ax ≤ e

x ∈ {0, 1}n

A ∈ {0, 1}m·n,

(5)

with the additional restriction that each variable xi should participate in exactly w con-

straints:

e′A = we′. (6)

Let z∗ denote an optimal solution to Problem (5) and Z∗ = e′z∗ be its associated

objective function value. Then the following theorem holds:

9

Theorem 2. If Q = w2 and w > 1, Algorithm 1, operating with a FIFO list and an injective

h(·), finds a feasible solution z for Problem (5) with objective function value ZH = e′z

satisfying:
Z∗

ZH

≤ w2

2w − 1
. (7)

We defer the proof of the theorem to the end of the section, and first introduce a lemma

summarizing the properties of a feasible z not satisfying the requirement of Theorem 2. In

what follows, a
′
j will always denote the j-th row of the matrix A, ei will denote the i-th unit

vector, and e will denote the vector with 1 in every component.

Lemma 3. Let z be a feasible solution such that e′z < 2w−1
w2 Z∗ and e′z ≥ e′y, for all

solutions y feasible and adjacent to z. Also let

O = {i ∈ {1, . . . , n} : z∗i = 1} , (components = 1 in the optimal solution) (8)

I = {i ∈ {1, . . . , n} : zi = 1} , (components = 1 in the current solution) (9)

Vi =
{

l ∈ {1, . . . ,m} : a
′

l (z + ei) > 1
}

, (i ∈ O) , (10)

(constraints violated by increasing i-th component of current solution)

V = {i ∈ O : |Vi| = 1} , (11)

R = |V| ; V ≡ {v1, . . . , vR} . (12)

Then the following properties hold:

A (ei + ej) ≤ e and Vi ∩ Vj = ∅, ∀ i 6= j ∈ O, (13)

R >
Z∗

w
, (14)

vi ∈ V ⇒ vi /∈ I and ∃ pi ∈ I \ O s.t. A (z + evi
− epi

) ≤ e, (15)

∃ j ∈ {1, . . . ,m} and ∃T ≤ R s.t. A

(
z +

T∑
i=1

evi
−

T∑
i=1

epi
+ ej

)
≤ e. (16)

Proof. From the definition of O, z∗ =
∑

i∈O ei. Since z∗ feasible, A z∗ ≤ e. With A ∈
{0, 1}m·n ⇒ A (ei + ej) ≤ e, ∀ i 6= j ∈ O. Intuitively, this means that two variables, xi and

xj, cannot participate in the same constraint.

To prove the second part of (13), assume, for the purposes of a contradiction, that ∃ l ∈
Vi ∩ Vj ⇒ a

′

l (z + ei) > 1 and a
′

l (z + ej) > 1. Since z feasible, a
′

l z ≤ 1⇒ a
′

l ei = a
′

l ej = 1,

in contradiction with the result in the previous paragraph.

10

To prove (14), first note that only constraints al that are tight at z can belong to Vi :

∀ i ∈ O,∀ l ∈ Vi, a
′

l (z + ei) > 1 ⇒
(
since a

′

j ei ≤ 1, ∀ j
)
⇒ a

′

l z = a
′

l ei = 1. (17)

Since each variable participates in exactly w constraints, and e′z < 2w−1
w2 Z∗, the number

of constraints that are tight at z always satisfies:

(# constraints tight at z) < w · 2w − 1

w2
Z∗ =

(
2− 1

w

)
Z∗ . (18)

Now consider the sets Vi. Since e′z∗ = Z∗, there are Z∗ such sets, one for each i ∈ O. If

∃ i ∈ O s.t. Vi = ∅, then z+ei would be feasible, with a strictly larger objective function than

z, in contradiction with the second assumption concerning z. Therefore |Vi| ≥ 1,∀ i ∈ O,

implying:
Z∗∑
i=1

|Vi| =
∑

i:|Vi|=1

+
∑

i:|Vi|≥2

≥ R + 2(Z∗ −R) = 2 Z∗ −R. (19)

We have argued that only constraints that z satisfies with equality can belong to Vi.

Thus, from (18) and (19) we obtain the desired relation (14):

2 Z∗ −R ≤
Z∗∑
i=1

|Vi| < Z∗
(

2− 1

w

)
⇔ R >

Z∗

w
.

To prove (15), observe that if vi ∈ V, then vi ∈ O and |Vvi
| = 1. Then (17) implies that

∃ unique l ∈ Vvi
s.t. a′

l (z + evi
) > 1 and ∀ j 6= l, a′

j (z + evi
) ≤ 1.

Assume vi ∈ I. Then z ≥ evi
. Since each variable participates in w constraints,

∃ l1, . . . , lw distinct constraints s.t. a
′

lj
evi

= 1, which implies a
′

lj
(z + evi

) ≥ 2, ∀ j =

1, . . . , w, in contradiction with |Vvi
| = 1. Therefore, vi /∈ I.

Consider again the unique l s.t. a
′

l (z + evi
) > 1. From (17), a

′

l z = 1 ⇒ ∃ pi ∈
I s.t. a

′

l epi
= 1. Also, since vi /∈ I, pi 6= vi. Assume pi ∈ O; then a

′

l epi
= a

′

l evi
=

1, pi, vi ∈ O, in direct contradiction with (13). Hence pi /∈ O.

Now consider ẑ = z + evi
− epi

. ∀ j ∈ {1, . . . ,m}, j 6= l, a
′
j ẑ ≤ a

′
j (z + evi

) ≤ 1. Also,

a
′

l ẑ = 1 + 1− 1 = 1. Therefore, ẑ is feasible, concluding the last part of (15).

Before establishing the proof of (16), first note that result (15) can be extended by

induction if pi 6= pj when vi 6= vj. Namely, ∀T ≤ R, the following solution ẑ will be feasible:

ẑ = z +
T∑

i=1

evi
−

T∑
i=1

epi
. (20)

11

If, for some vi 6= vj, we have pi = pj, then an even stronger statement holds: ẑ =

z − epi
+ evi

+ evj
will be feasible (since subtracting epi

will “loosen” both constraints,

instead of just one), and therefore T = 1 and j = vj satisfy (16).

So for the remaining proof of (16), we can restrict attention to the most general case of

vi 6= vj ⇒ pi 6= pj. Let us define the following sets:

Î = {i ∈ O : ẑi = 1} , (21)

β =
{

l ∈ {1, . . . ,m} : ∃ i ∈ Î s.t. a
′

l ei = 1
}

, (22)

β̄ = {1, . . . ,m} \ β. (23)

Î is the set of all variables which are 1 in both ẑ and the optimal solution, z∗. From the

construction of ẑ, it can be seen that Î = V ∪ (I ∩ O). From (17), ∀ vi ∈ V ⇒ vi /∈ I ⇒
V ∩ I = ∅ ⇒

∣∣∣Î∣∣∣ = |V|+ |I ∩ O|. Letting n0 = |I ∩ O|, we have
∣∣∣Î∣∣∣ = R + n0.

β is the set of all constraints in which variables from Î participate. Since ∀ i 6= j ∈ Î ⇒
i, j ∈ O, then, from (13), they cannot participate in the same constraint, so |β| = (R+n0)w.

β̄ is the set of all other constraints.
∣∣β̄∣∣ = m− w (R + n0).

From (20), with T = R, we obtain that ẑ = z +
∑R

i=1 evi
−
∑R

i=1 epi
is feasible. Since

e′ẑ = e′z < Z∗

w

(
2− 1

w

)
, then, by an argument similar to (18), the number of tight constraints

in ẑ is < Z∗ (2− 1
w

)
. Furthermore, since ẑi = 1, ∀ i ∈ Î, all the β constraints are tight, so

the number of tight β̄ constraints is < Z∗ (2− 1
w

)
− (R + n0)w. From (14), R > Z∗ /w ⇒

Z∗
(

2− 1

w

)
− (R + n0) · w < Z∗

(
2− 1

w

)
−R · w − n0 ≤

≤ Z∗
(

2− 1

w

)
− Z∗

w
(w − 1)−R− n0 = Z∗ −R− n0. (24)

Now consider all the variables in O \ Î. For any such variable j, j /∈ Î ⇒ ẑj = 0 and

j only participates in β̄ constraints. Also, ∀ i 6= j ∈ O \ Î, from (13), j and i cannot

participate in the same constraint. But from (24), there are < Z∗−R−n0 tight constraints

involving variables j, and there are |O|−
∣∣∣Î∣∣∣ = Z∗−R−n0 such j. Therefore ∃ j s.t. ẑ +ej

is feasible, proving (16).

The main result of the preceding lemma is (16), which indicates that for any solution z

not satisfying the requirements of Theorem 2, a better feasible solution ẑ = z +
∑R

i=1 evi
−∑R

i=1 epi
+ ej can be constructed, by:

1. Subtracting all the relevant epi

12

2. Adding ej

3. Adding all the corresponding evi

However, it is not immediately clear that our algorithm would proceed according to these

steps. For instance, perhaps a solution z −
∑R

i=1 epi
is never examined! As such, we need

one more result concerning the reachability of ẑ.

We introduce the concept of a generation, defined by the following recursion:

• Let the best feasible solution z always have generation 0.

• For any solution y inserted in the list at Step 12 of Algorithm 1, define its generation

to be 1+ the generation of the solution x from Step 4, to which y is adjacent.

Observe that the definition is consistent: the generation counting is always reset when

the current feasible solution z is updated in Step 6, since the solution list is cleared and z,

whose generation is set to 0, is the only solution added to the list. From that point onwards,

for any solution x extracted and examined in Steps 3 and 4, the generation t will simply

represent the number of variables that the algorithm has changed starting at z in order to

reach x. Note that this is not the same as the distance between z and x. For instance,

x = z + ei − ei will actually be identical to z, but it will have generation 2.

An immediate consequence of this assignment is that all the solutions x will be inserted

into (and hence extracted from) the FIFO list in an increasing order of generations.

With variables z, R and indices pi, vi and j having the same significance as that from

Lemma 3, we establish the following result:

Lemma 4. If Q ≥ T ·w and T ≤ R, a feasible solution of generation T with the same trace

and objective function value as z −
∑T

i=1 epi
will be in the FIFO list.

Proof. First note that, as a consequence of (15), ∀ t ≤ T, z ≥
∑t

i=1 epi
, which makes the

subtraction operations well defined. Furthermore, any such solution is feasible (since z itself

is feasible), which also implies that any solution with the same trace as z ≥
∑t

i=1 epi
must

also be feasible.

The first step of the induction is trivial: generation 0 has z in the list. Assume that the

property holds for solutions of the t-th generation, t < T , and call such a solution z(t). Note

that z(t) is not necessarily equal to z −
∑t

i=1 epi
. It only has the same trace and objective

function value.

13

We claim that z
(t)
pt+1 = 1. Assume by contradiction that z

(t)
pt+1 = 0. With any subtraction

of epi
, exactly w constraints become loose, and hence ‖trace(x)− trace(z)‖1 increases by

w. Thus the trace distance between z(t) and z is exactly tw. If z
(t)
pt+1 = 0, and the trace

is the same as that of z −
∑t

i=1 epi
, then in some earlier generation, the variable at pt+1

was changed from 1 to 0. Also, to maintain the same trace, it must have been the case

that one other variable was changed from 0 to 1 in each of the w constraints in which pt+1

participates. But this would cause a delay of at least 2 generations as compared to z(t),

meaning that such a solution could not have been already examined. It is the property of

the FIFO list which imposes that solutions will be examined in a strictly increasing order of

generations. Hence it must be that z
(t)
pt+1 = 1.

But then, in the t-th generation, a solution with the same trace and objective function

as z(t) − ept+1 will be examined. Since Q ≥ T ·w ≥ (t + 1)w, and this solution is feasible, it

will immediately satisfy Conditions (A1) and (A2) characterizing interesting solutions. For

Condition (A3), there are two cases:

• If the objective function value for this solution is larger than that found in its corre-

sponding trace box, the solution will be added to the list, with generation t+1 assigned

to it, and the induction proof is complete.

• Otherwise, since all the trace boxes are set to −∞ when the list is cleared, it must

be that some other solution z̃, mapping to the same trace box, was already added

to the list in some earlier step. Since h(·) is injective, it must be that trace(z̃) =

trace
(
z(t) − ept+1

)
. But, as argued in the preceding paragraph, this would imply that

the distance between trace(z) and trace(z̃) was exactly (t+1)w, meaning that at least

t+1 variables were changed starting from z in order to reach z̃. But then z̃ must have

generation t + 1, completing our inductive proof.

With the preceding lemmas, we are now ready to prove the result of Theorem 2.

Proof. Assume the heuristic is run with some initial feasible solution z = z0 satisfying

e′z < 2w−1
w2 Z∗. If there are solutions y adjacent to z that satisfy the condition at Step 5 in

the algorithm (namely, they are feasible and have better objective function value than z),

then Steps 6-8 will clear the solution list and replace z with y. If repeating this process

results in a feasible solution z satisfying equation (7), then there is nothing to prove. So,

without loss of generality, let us assume that we reach a feasible solution z for which no

14

adjacent y satisfies the condition at Step 5. Then, from Lemma 3, a feasible solution

ẑ = z +
∑R

i=1 evi
−
∑R

i=1 epi
+ ej exists.

By Lemma 4, after t generations, a solution z(t) with the same trace and objective function

value as z −
∑t

i=1 epi
will be in the FIFO list. The number t of such generations that need

to be considered is given by the first time when ej can be added. Since ej participates in w

constraints, it will collide with at most w of the pi, which must first be subtracted. Therefore,

we require t ≥ w, which, by Lemma 4, implies that Q ≥ w2, justifying the condition in the

statement of the theorem.

Once all the pi’s are subtracted, in generation w, a feasible solution with the same trace

and objective function as z −
∑w

i=1 epi
+ ej will be considered by the algorithm. By the

same inductive argument as in the proof of Lemma 4, it can be seen that for all future

generations w + 1 + t, a feasible solution with the same trace and objective function value

as z−
∑w

i=1 epi
+ ej +

∑t
i=1 evi

will be in the FIFO list. After 2w + 1 generations, a feasible

solution z(2w+1) = z−
∑w

i=1 epi
+ ej +

∑w
i=1 evi

, with objective function e′z(2w+1) = e′z + 1,

will be examined. In Step 6, the current feasible solution z will be replaced with z(2w+1),

and the solution list and trace boxes will be cleared.

Repeating this argument inductively for the new z, we see that the end solution has to

obey Z∗

ZH
≤ w2

2w−1
, proving Theorem 2.

It is worth making the observation that this result is only slightly weaker than the best

known bound of w
2

+ ε for w-set packing, found in (Hurkens and Schrijver, 1989). However,

the latter bound is derived as a byproduct of a procedure applicable only to set packing,

whereas our method pertains to general binary optimization problems.

5. Implementation

In this section, we present several details specific to our implementation of the algorithm.

While these provide a guideline for several “good” choices of data-structures and parameter

values, they should by no means be regarded as exhaustive or optimal. Our main reason

for including them here is to provide a complete framework for the computational results in

Section 6.

15

5.1. Problem Representation

In order to accommodate large data-sets, we have opted to implement the constraint matrix

A as a sparse matrix (n sparse vectors, one for each column). The vectors b ∈ Zm and

c ∈ Zn were represented as dense vectors (arrays of integer values).

For the solutions x, we have taken two different approaches. In problems where x ∈ Zn,

solutions were represented as n-dimensional dense vectors. For problems with x ∈ {0, 1}n,

every solution was represented as a bit-array (also known as bit-field or bitmap). This

compact representation significantly reduced the memory requirements, which turned out to

be essential for achieving better performance.

Since the algorithm usually operated with interesting solutions, which, by Conditions

(A1) and (A2) from Section 2.1, have few nonzero entries, we have decided to store the

traces of solutions as sparse arrays.

5.2. Algorithm-characteristic Data Structures

As hinted to in earlier sections, the major choices in terms of implementation were the

solution list SL, with the associated trace boxes, and the function h(·).
Note that if no other restrictions are imposed, an implementation using a FIFO solution

list, with a large Q, could create structures of very large size, since interesting solutions

could be added for a very long time until a feasible solution of better objective function

value is found, and the list is cleared. To fix this situation, we have decided to store as

many solutions as there are trace boxes. After all, once a solution is deemed interesting, the

previous solution mapping to the same trace box is no longer interesting, and hence could

simply be ignored.

This brings us to the issue of the number of trace boxes. The ideal case of an injective

h(·), which implies having one trace box for each possible trace of an interesting solution,

would require O
((

2m
Q

))
boxes, by equation (4). Since for every trace box, we would also

like to store the associated interesting solution, this would imply a memory commitment of

O
(
n ·
(
2m
Q

))
, which for large m, n could cause problems even in modern systems.

As suggested in Section 2.1, one way to overcome these difficulties is to relax the re-

quirement of having h(·) injective. Instead, we would consider a function h : U → V , where

U ⊂ {0, 1}2m is the set of traces of interesting solutions and V = {1, 2, . . . , NTB} is the set of

indices of trace boxes. The parameter NTB represents the total number of trace boxes that

16

can be considered, which is also the total size of the allowed solution list SL. As such, it

provides a direct connection with the total amount of memory committed to the algorithm,

and can be adjusted depending on the available resources.

The advantage of this approach is that we are now free to choose NTB and h(·). The

main pitfall is that for most practical problems, NTB << |U |, and hence multiple interesting

solutions with different traces will map to the same trace box, causing some of them to be

ignored in the search. If the number of such collisions is high, then the algorithm might

ignore many “good” directions of improvement, resulting in poor performance. To minimize

this undesirable effect, we take the following twofold approach:

1. We choose h(·) as a hash function, namely a mapping from a large universe of values

(U) to a much smaller set (V), with as few collisions as possible.

2. Instead of having a single hash function h(·), i.e. allowing each trace of an interesting

solution to map to a single trace box, we consider a family of hash functions hi(·), i ∈
{1, 2, . . . , NH}. The parameter NH , representing the number of distinct trace boxes

into which an interesting trace gets mapped, is a fixed, small number that becomes

another choice in the design.

With the addition of multiple hash functions hi(·), the original definition of an interesting

solution from Section 2.1 has to be modified slightly. While the first two conditions remain

the same, a solution y is now found interesting if c′y > c′x for all x already examined such

that hi (trace(x)) = hi (trace(y)) for some i ∈ {1, . . . , NH}. In other words, in Step 10 of

Algorithm 1, y is interesting if its objective function value c′y is larger than at least one of

the values stored in the trace boxes h1(trace(y)), h2(trace(y)), . . . , hNH (trace(y)). If that

is the case, in Step 11, the value c′y is stored in all the trace boxes satisfying this property,

and the solution y is written in the corresponding locations in the solution list at Step 12.

The downside for using this approach is that the theoretical result presented in prior

sections change for the worse. Namely, for a general cost vector c ∈ Zn, with the number of

trace boxes fixed to NTB and the number of hash functions fixed to NH , the running time

from Section 3 becomes:

O
(
‖c‖1

2 ·NTB · n ·max(m, n ·NH)
)

, (25)

17

and the performance guarantee from Section 4 is lost. However, as we will see in Section

6, this approach is advantageous from a computational perspective, and delivers very good

results in practice.

5.3. Hash functions

To complete the description of the implementation, in this subsection we present our partic-

ular choice of functions hi(·). While the literature on hash functions is abundant and many

good choices are available (see Cormen et al. (2001) for an introduction and S. Bakhtiari and

Pieprzyk (1995) for a survey article), we have settled for a less sophisticated version, which

we describe in the next paragraphs.

In the first step, for each hash function hi, i ∈ {1, 2, . . . , NH}, a set of m positive integer

values was generated. These values were chosen uniformly at random, and only once, at the

very beginning of the algorithm. Let the i-th set of such values be Φi = {φi
1, φi

2, . . . , φi
m}.

Given the total (fixed) number NTB of traces boxes, we distinguish the following two

regions of equal size:

1. The first region, henceforth referred to as the “yv region”, corresponds to interesting

solutions y with yv 6= 0 (i.e., violating certain constraints). This region is further split

into subregions, depending on the number of violated constraints:

• The first subregion, of size m, corresponds to solutions y with exactly one violated

constraint (‖yv‖1 = 1). Since there are m total constraints, the mapping into this

region is trivial: a solution which violates only constraint i will be mapped to the

i-th box of this region.

• The remaining (NTB/2 − m) boxes from the yv region are split evenly among

exactly Q − 1 subregions. Any interesting solution y, with violated constraints

j1, j2, . . . , jp (2 ≤ p ≤ Q), would be mapped only to the p-th such subregion,

and would have NH boxes corresponding to it, one for each hash function. The

i-th hash function would compute the corresponding trace box according to the

following formula:

hi [trace(y)] =

(
p∑

k=1

φi
jk

+

p∏
k=1

φi
jk

)
mod

(
NTB/2−m

Q− 1

)
, i ∈ {1, . . . , NH}

(26)

18

Where (a mod b) denotes the remainder obtained when dividing the integer a by

the integer b. The above formula has a simple interpretation: the first term is

a combination of the set Φi of random values, based on the indices j1, . . . , jp of

the violated constraints. The mod operation ensures that the resulting index is

in a range suitable for the p-th subregion. The intuition behind why the formula

works and results in few collisions is more complicated, and is beyond the scope

of the current paper (we refer the interested reader to (S. Bakhtiari and Pieprzyk,

1995) for a more comprehensive treatment).

2. The second region, also of size NTB/2, corresponds to interesting solutions with no

violated constraints (yv = 0), but with loose constraints (yw 6= 0). Similar to the

previous discussion, this region is called the “yw region”, and is further divided into

subregions:

• The first subregion has size m, and corresponds to solutions with exactly one

loose constraint. The mapping here is analogous to that from the yv case.

• The remaining NTB/2−m boxes are divided evenly among the Q− 1 subregions

corresponding to solutions with more than one loose constraint. However, unlike

the situation with yv, it is no longer desirable to map solutions with p loose con-

straints exclusively in the p-th subregion. Instead, these solutions should also be

compared with solutions having fewer than p loose constraints. The intuition is

that if a solution having more loose constraints also has higher objective func-

tion value, then it would be desirable to have it considered by the algorithm.

To accommodate for this new provision, for each solution with loose constraints

j1, . . . , jp (p ≥ 2), we choose several subsets of 1, 2 or r constraints (r ≤ p could

be either a function of p or chosen in some deterministic way). The numbers

of such subsets, henceforth referred to as N1, N2 and Nr respectively, are fixed

and become parameters of the algorithm. Furthermore, the choice of the subsets

themselves is done in a deterministic fashion, so that for any particular trace of

an interesting solution y, the same subsets are always chosen. Once such a subset

of indices j1, . . . , jr is fixed, the trace index is computed with the help of one of

the hash functions defined before - for instance, we could use the very first hash

19

function:

h1 [trace(y)] =

(
r∑

k=1

φ1
jk

+
r∏

k=1

φ1
jk

)
mod

(
NTB/2−m

Q− 1

)
(27)

Note that since we are already considering multiple sets of indices, the same

solution is automatically mapped into multiple boxes in the yw region, so there is

no need to compute the results from multiple hash functions, as was done for yv.

We conclude this section by making two relevant observations. First, note that since

the “random” values Φi do not change during the run of the algorithm, the hash functions

hi(·) are deterministic, in the sense that the same trace of a particular solution y is always

mapped to the same trace boxes, regardless of the time at which it is considered by the

algorithm. Therefore, the set of rules specified above uniquely determines the way in which

each interesting solution is mapped into the trace boxes (and, implicitly, in the solution list).

Second, observe that the number of trace boxes NTB (or, equivalently, the total amount

of memory committed to the solution list) and the parameter Q should, in general, not be

chosen independently. The reason is that for a fixed NTB, the size of each subregion in

both the yv and the yw regions is inversely proportional with Q. Therefore, if we would like

the parameter Q to be a good indicator of the performance of the algorithm (i.e., larger Q

resulting in improved objective function value), then we should increase NTB accordingly, so

that the ratio NTB/Q remains roughly constant.

5.4. Extracting a new solution from the list

The last relevant detail of the implementation is the way in which interesting solutions are

extracted from the solution list SL, at Step 3 of the algorithm. While any procedure that

extracts solutions repeatedly would eventually explore all the interesting solutions, particular

choices for the order of extraction could speed up the algorithm considerably. For example,

it would be desirable to first examine solutions y adjacent to an interesting solution x that

has very few violated constraints, because such directions are more likely to result in feasible

solutions.

To this end, we have included in the implementation a simple scheme based on a priority

queue. The main idea behind this data-type is that each element inserted in the queue also

has an associated value, which determines its priority relative to the other elements in the

queue. Whenever an extraction occurs, the first element to leave the queue is the one with

20

the highest priority among all the members of the queue. For a comprehensive treatment

and other references, we refer the interested reader to (Cormen et al., 2001).

To implement this concept in our setting, whenever a solution y was determined as

interesting at Step 10, a priority value pv(y) was computed based on y’s objective function

value and the number of constraints it violated (we used a very simple, additive scheme).

When y was written in the solution list at Step 12, the index of its corresponding trace box

was introduced in the priority queue, with a priority of pv(y). By following this rule, the

solution x extracted at Step 3 always had the largest priority among all solutions present in

the list.

The downside for using a priority queue is that we need to store an additional O(NTB)

values, and the complexity for inserting and/or extracting from the priority queue becomes

O (log NTB), hence raising the overall complexity of the scheme. However, despite this

seemingly higher computational load, the actual (physical) running time is usually decreased,

since the heuristic spends less time searching in ”infertile” directions.

5.5. Running the algorithm

We conclude this section by first summarizing the parameters that the user is free to choose

in our implementation of the heuristic:

• Q - the parameter determining what constitutes an interesting solution.

• NTB - the number of trace boxes, also equal to the size of the solution list. Since spec-

ifying a particular NTB is equivalent to fixing a certain memory commitment (MEM)

for the solution list, we have decided to use the latter for convenience.

• NH - the number of hash functions, influencing how many boxes correspond to each

interesting solution.

• N1, N2 and Nr - the number of subsets of 1, 2 or r loose constraints, respectively, which

should be considered when computing the indices of the trace boxes.

In order to simplify the benchmarking of the algorithm, we have decided to fix some

of the adjustable parameters to a choice that has consistently delivered good results in our

experiments:

NH = 2; N1 = 2; N2 = 2; Nr = 5.

21

With respect to the two remaining parameters, Q and MEM , we have found that the

most natural way to run the heuristic procedure is in stages, by gradually increasing the

values of both Q and MEM . The reason is that cold-starting the procedure directly with

large values of Q and MEM would result in an unnecessarily large computational time spent

in clearing the (large) solution list SL, which is done whenever the current feasible solution

is updated. Thus, to improve the physical running time, one should always first run the

heuristic with smaller values of Q and MEM , which would (quickly) deliver better feasible

solutions, that could in turn be used to warm-start the heuristic with larger Q and MEM .

6. Computational Results

We have tested our implementation of the algorithm on several classes of problems, and

have compared the results with the output from CPLEX 9.1. All the tests were run on

the Operations Research Center computational machine, which is a Dual Core Intel R©
Xeon R© 5050 Processor (3.00GHz, 4MB Cache, 667MHz FSB), with 8GB of RAM (667MHz),

running Ubuntu Linux.

Consistent with our remarks in the end of Section 5.5, we have used the values NH =

2, N1 = 2, N2 = 2, Nr = 5, and the following sequence of runs of the heuristic in all the

test-cases:

(1) Q = 4, MEM = 10MB ⇒ (2) Q = 4, MEM = 50MB ⇒ (3) Q = 6, MEM = 100MB ⇒

(4) Q = 6, MEM = 250MB ⇒ (5) Q = 10, MEM = 1GB ⇒ (6) Q = 10, MEM = 2GB ⇒

(7)

{
Q = 15, MEM = 6GB

Q = 20, MEM = 6GB

In step (7), the brace indicates that the two independent runs were both started with the

same initial feasible solution, given by the output from the run in step (6). These two runs

were still performed sequentially (i.e. non-concurrently), so that the total completion time

of the heuristic was given by the sum of the completion times of stages (1) to (6) and the

two runs in stage (7).

22

6.1. Set covering

The first type of problem that we considered was set covering:

min c′x

s.t. Ax ≥ e

x ∈ {0, 1}n, A ∈ {0, 1}m·n.

(28)

In order to have sufficiently large data-sets, we wrote a script that generated different in-

stances of the problem. The script took as arguments the number of constraints (m), the

number of variables (n) and the number of nonzero entries (w) in each column of A. In

addition, there were two parameters specifying lower and upper bounds on the entries in the

cost vector c, for the weighted version of the problem.

In the first class of tests, we considered m = 1000, n = 2500 and took w = 3, w = 5 or w

random, between 3 and 7. Table 1 records the results of the simulation for the unweighted

case, c = e, while Table 2 contains the results for the weighted case, where the weights ci

were also randomly generated, with values ci ∈ [400, 500].

Table 1: Results for Unweighted Set Covering. m = 1000, n = 2500, c = e.
time 5 hours 10 hours 20 hours
w ALG1 CPLEX ALG1 CPLEX ALG1 CPLEX

3 344 344 344 344 344 344
5 231 229 231 229 231 229

3÷ 7 203 211 203 210 203 210

Table 2: Results for Weighted Set Covering. m = 1000, n = 2500, ci ∈ [400, 500].
time 5 hours 10 hours 20 hours
w ALG1 CPLEX ALG1 CPLEX ALG1 CPLEX

3 150,219 151,363 149,978 151,363 149,744 150,843
5 100,261 103,426 99,858 103,426 99,532 103,426

3÷ 7 89,341 90,361 88,996 90,017 88,996 88,996

In the third category of tests, summarized in Table 3, we have considered a larger problem

size, m = 4, 000 and n = 10, 000, with w random in {3, . . . , 7}.
Based on the eight examples presented here and several other runs we have performed,

our assessment is that Algorithm 1 outperforms CPLEX after approximately 20 hours (and

in some cases earlier) when both methods are run with the same amount of memory (6 GB).

For shorter running times (1-2 hours), CPLEX has an edge, although not in all cases.

23

Table 3: Results for large instance of Unweighted Set Covering. m = 4000, n = 10000, w ∈
{3, . . . , 7}.

time 10 hours 20 hours 100 hours 200 hours
remarks ALG1 CPLEX ALG1 CPLEX ALG1 CPLEX ALG1 CPLEX

unweighted 969 904 858 887 826 865 826 858
weighted 454,495 393,540 432,562 393,540 367,516 381,087 366,021 381,087

6.2. Set packing

The second problem we considered was set packing:

max c′x

s.t. Ax ≤ e

x ∈ {0, 1}n, A ∈ {0, 1}m·n.

(29)

In this case, we also used a script to generate the test cases. Just as with set covering, we

took m = 1000, n = 2500 and w = 3, and ran both unweighted and weighted versions (for

the latter, all the entries in c were generated randomly, with values between 400 and 500).

The results for the two tests are recorded in Tables 4 and 5, respectively. Just as with set

covering, we find that Algorithm 1 is able to outperform CPLEX after approximately 20

hours, when both methods are run with the same amount of memory (6 GB).

Table 4: Results for Unweighted Set Packing. m = 1000, n = 2500, c = e.
time 5 hours 10 hours 20 hours
w ALG1 CPLEX ALG1 CPLEX ALG1 CPLEX

3 319 317 320 317 320 317
5 164 158 167 158 167 160

3÷ 7 236 237 239 237 239 238

Table 5: Results for Weighted Set Packing. m = 1000, n = 2500, ci ∈ [400, 500].
time 5 hours 10 hours 20 hours
w ALG1 CPLEX ALG1 CPLEX ALG1 CPLEX

3 146,984 146,771 146,984 147,877 147,604 147,877
5 76,258 71,782 76,258 72,592 77,086 72,592

3÷ 7 108,077 107,447 108,722 107,447 109,264 107,463

24

7. Conclusions

In this paper, we have presented a new class of general-purpose heuristic methods for solving

large, sparse binary optimization problems. The formulation of the central algorithm, based

on the notion of interesting solutions and their traces, provides flexibility in terms of the

exact implementation, and allows the user to directly influence the complexity-performance

tradeoff through the adjustable parameter Q.

In addition to interesting theoretical properties (pseudo-polynomial running times and

performance guarantees), we feel that the proposed method has practical promise, as it

is generally applicable, and it is either competitive with or strictly better than the leading

optimization package in preliminary computational tests of fairly large instances of randomly

generated binary optimization problems.

8. Appendix

The interested reader can find below the continuation of the set-packing example (2) from

Section 2, which we restate for ease of exposition:

max x1 + x2 + x3

s.t. x1 + x3 ≤ 1
x2 + x3 ≤ 1

x1, x2, x3 ∈ {0, 1}

• (Steps taken in Section 2, ending with the following values for the variables:

z = [1, 1, 0]; SL = { [1, 1, 0] }; T B[i] = −∞,∀ i.)

• (Step 3) x← [1, 1, 0]. Adjacent solutions are [0, 1, 0], [1, 0, 0], [1, 1, 1].

– (Step 4) y = [0, 1, 0], trace(y) = [0, 0; 1, 0].

∗ (Step 5) y feasible, but e′y = 1 < e′z (= 2).

∗ (Step 10) (A1)-(A3) true, so y is interesting.

∗ (Steps 11 - 12) T B[2]← 1; SL ← { [0, 1, 0] }.

– (Step 4) y = [1, 0, 0], trace(y) = [0, 0; 0, 1].

∗ (Step 5) y feasible, but e′y = 1 < e′z (= 2).

∗ (Step 10) (A1)-(A3) true, so y is interesting.

25

∗ (Steps 11 - 12) T B[1]← 1; SL ← { [0, 1, 0]; [1, 0, 0] }.

– (Step 4) y = [1, 1, 1], trace(y) = [1, 1; 0, 0].

∗ (Step 5) y infeasible.

∗ (Step 10) (A2) false, since ‖trace(y)− trace(z)‖1 = ‖[1, 1; 0, 0]‖1 = 2 > Q,

so y is not interesting.

• (Step 2) SL = { [0, 1, 0]; [1, 0, 0] } 6= ∅.

• (Step 3) x← [0, 1, 0]. Adjacent solutions are [1, 1, 0], [0, 0, 0], [0, 1, 1].

– (Step 4) y = [1, 1, 0], trace(y) = [0, 0; 0, 0].

∗ (Step 5) y feasible, but e′y = 2 = e′z.

∗ (Step 10) (A1)-(A3) true, so y is interesting.

∗ (Steps 11 - 12) T B[0]← 2; SL ← { [1, 0, 0]; [1, 1, 0] }.

– (Step 4) y = [0, 0, 0], trace(y) = [0, 0; 1, 1].

∗ (Step 5) y feasible, but e′y = 0 < e′z (= 2).

∗ (Step 10) (A2) false, since ‖trace(y)− trace(z)‖1 = ‖[0, 0; 1, 1]‖1 = 2 > Q,

so y is not interesting.

– (Step 4) y = [0, 1, 1], trace(y) = [0, 1; 0, 0].

∗ (Step 5) y infeasible.

∗ (Step 10) (A1)-(A3) true, so y is interesting.

∗ (Steps 11 - 12) T B[4]← 2; SL ← { [1, 0, 0]; [1, 1, 0]; [0, 1, 1] }.

• (Step 2) SL = { [1, 0, 0]; [1, 1, 0]; [0, 1, 1] } 6= ∅.

• (Step 3) x← [1, 0, 0]. Adjacent solutions are [0, 0, 0], [1, 1, 0], [1, 0, 1].

– (Step 4) y = [0, 0, 0], trace(y) = [0, 0; 1, 1].

∗ (Step 5) y feasible, but e′y = 0 < e′z (= 2).

∗ (Step 10) (A2) false, since ‖trace(y)− trace(z)‖1 = ‖[0, 0; 1, 1]‖1 = 2 > Q,

so y is not interesting.

– (Step 4) y = [1, 1, 0], trace(y) = [0, 0; 0, 0].

∗ (Step 5) y feasible, but e′y = e′z = 2.

26

∗ (Step 10) (A3) false, since e′y = T B[0] = 2, so y is not interesting.

– (Step 4) y = [1, 0, 1], trace(y) = [1, 0; 0, 0].

∗ (Step 5) y infeasible.

∗ (Step 10) (A1)-(A3) true, so y is interesting.

∗ (Steps 11 - 12) T B[8]← 2; SL ← { [1, 1, 0]; [0, 1, 1]; [1, 0, 1] }.

• (Step 2) SL = { [1, 1, 0]; [0, 1, 1]; [1, 0, 1] } 6= ∅.

• (Step 3) x← [1, 1, 0]. Adjacent solutions are [0, 1, 0], [1, 0, 0], [1, 1, 1].

– (Step 4) y = [0, 1, 0], trace(y) = [0, 0; 1, 0].

∗ (Step 5) y feasible, but e′y = 1 < e′z (= 2).

∗ (Step 10) (A3) false, since e′y = 1 = T B[2], so y is not interesting.

– (Step 4) y = [1, 0, 0], trace(y) = [0, 0; 0, 1].

∗ (Step 5) y feasible, but e′y = 1 < e′z (= 2).

∗ (Step 10) (A3) false, since e′y = T B[1] = 1, so y is not interesting.

– (Step 4) y = [1, 1, 1], trace(y) = [1, 1; 0, 0].

∗ (Step 5) y infeasible.

∗ (Step 10) (A2) false, so y is not interesting.

• (Step 2) SL = { [0, 1, 1]; [1, 0, 1] } 6= ∅.

• (Step 3) x← [0, 1, 1]. Adjacent solutions are [1, 1, 1], [0, 0, 1], [0, 1, 0].

– (Step 4) y = [1, 1, 1]. Infeasible, and not interesting.

– (Step 4) y = [0, 0, 1], trace(y) = [0, 0; 0, 0].

∗ (Step 5) y feasible, but e′y = 1 < e′z (= 2).

∗ (Step 10) (A3) false, since e′y = 1 < T B[0] = 2, so y is not interesting.

– (Step 4) y = [0, 1, 0]. Feasible, but not better than z. Not interesting, since (A3)

false.

• (Step 2) SL = { [1, 0, 1] } 6= ∅.

• (Step 3) x← [1, 0, 1]. Adjacent solutions are [0, 0, 1], [1, 1, 1], [1, 0, 0].

27

– (Step 4) y = [0, 0, 1]. Feasible, but not better than z. Not interesting, since (A3)

false.

– (Step 4) y = [1, 1, 1]. Infeasible. Not interesting, since (A2) false.

– (Step 4) y = [1, 0, 0]. Feasible, but not better than z. Not interesting, since (A3)

false.

• (Step 2) SL = ∅.

• (Step 13) Return z = [1, 1, 0].

References

Aarts, Emile, Jan K. Lenstra, eds. 1997. Local Search in Combinatorial Optimization. John

Wiley & Sons, Inc., New York, NY, USA.

Balas, Egon, Sebastián Ceria, Gérard Cornuéjols. 1993. A lift-and-project cutting plane

algorithm for mixed 0-1 programs. Math. Program. 58 295–324.

Balas, Egon, Clarence. H. Martin. 1980. Pivot and complement-a heuristic for 0-1 program-

ming. Management Science 26 86–96.

Cormen, Thomas H., Clifford Stein, Ronald L. Rivest, Charles E. Leiserson. 2001. Introduc-

tion to Algorithms . McGraw-Hill Higher Education.

Eckstein, Jonathan, Mikhail Nediak. 2007. Pivot, cut, and dive: a heuristic for 0-1 mixed

integer programming. Journal of Heuristics 13 471–503.

Fischetti, Matteo, Fred Glover, Andrea Lodi. 2005. The feasibility pump. Math. Program.

104 91–104.

Hurkens, C. A. J., A. Schrijver. 1989. On the size of systems of sets every t of which have an

sdr, with an application to the worst-case ratio of heuristics for packing problems. SIAM

J. Discret. Math. 2 68–72.

S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk. 1995. Cryptographic hash functions: A survey.

Tech. Rep. 95-09, University of Wollongong - Department of Computer Science.

28

